metal-organic compounds

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Bis(1,3-dibenzylimidazolium) μ-oxidobis[trichloridoferrate(III)]

E. M. Mutambi,* C. J. Adams and A. G. Orpen

University of Bristol, School of Chemistry, Cantock's Close, Bristol BS8 1TS, England Correspondence e-mail: chemm@bristol.ac.uk

Received 7 June 2010; accepted 21 June 2010

Key indicators: single-crystal X-ray study; T = 100 K; mean σ (C–C) = 0.002 Å; R factor = 0.033; wR factor = 0.081; data-to-parameter ratio = 25.2.

In the title compound $(C_{17}H_{17}N_2)_2$ [Fe₂Cl₆O], obtained from the solid-state reaction of FeCl₂ and *N*,*N'*-dibenzylimidazolium chloride, the complex anion has approximate D_{3d} symmetry with crystallographically imposed inversion symmetry coincident with the bridging μ -O atom. The stereochemistry about each FeCl₃O centre is distorted tetrahedral [Fe-Cl = 2.2176 (5)-2.2427 (5) Å and Fe-O = 1.7545 (2) Å]. The Cl atoms are involved in weak anioncation C-H···Cl interactions, giving a network structure.

Related literature

For literature relating to the intended product, see: Yoshida *et al.* (2005); Zhong *et al.* (2007). For literature relating to anions see: Molins *et al.* (1998); Kohn *et al.* (1996); Vasilevsky *et al.* (1988).

Experimental

Crystal data $(C_{17}H_{17}N_2)_2$ [Fe₂Cl₆O] $M_r = 839.05$ Orthorhombic, *Pbca* a = 16.2468 (5) Å b = 12.8841 (4) Å c = 17.6041 (5) Å

 $V = 3684.99 (19) \text{ Å}^{3}$ Z = 4Mo K\alpha radiation $\mu = 1.26 \text{ mm}^{-1}$ T = 100 K $0.31 \times 0.21 \times 0.16 \text{ mm}$

Data collection

```
Bruker SMART CCD area-detector
diffractometer
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
T_{\rm min} = 0.681, T_{\rm max} = 0.815
```

Refinement

$R[F^2 > 2\sigma(F^2)] = 0.033$	214 parameters
$wR(F^2) = 0.081$	H-atom parameters constrained
S = 1.04	$\Delta \rho_{\rm max} = 0.77 \text{ e } \text{\AA}^{-3}$
5399 reflections	$\Delta \rho_{\rm min} = -0.44 \text{ e } \text{\AA}^{-3}$

42672 measured reflections

 $R_{\rm int} = 0.052$

5399 independent reflections

4111 reflections with $I > 2\sigma(I)$

Table 1

Hydrogen-bond geometry (Å, °).

D_H4	<i>D</i> _Н	H4	D A	D_H4
J=II···A	<i>D</i> =11	II····A	DA	D=II···A
$C1 - H1 \cdot \cdot \cdot Cl1^i$	0.95	2.82	3.6579 (16)	147
$C3 - H3 \cdot \cdot \cdot Cl1$	0.95	2.81	3.4853 (17)	129
$C11 - H11A \cdots Cl1^{i}$	0.99	2.85	3.7440 (18)	151
$C13 - H13 \cdot \cdot \cdot Cl2^{ii}$	0.95	2.86	3.5619 (18)	131
$C15 - H15 \cdots Cl2^{iii}$	0.95	2.91	3.8403 (18)	167
$C2 - H2 \cdot \cdot \cdot Cl3$	0.95	2.91	3.8223 (17)	162

Symmetry codes: (i) $x, -y + \frac{1}{2}, z - \frac{1}{2}$; (ii) $-x + \frac{3}{2}, -y, z - \frac{1}{2}$; (iii) $x, -y - \frac{1}{2}, z - \frac{1}{2}$.

Data collection: *SMART* (Bruker, 2007); cell refinement: *SAINT* (Bruker, 2007); data reduction: *SAINT*; program(s) used to solve structure: *SHELXL97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXTL* (Sheldrick, 2008); molecular graphics: *SHELXTL*; software used to prepare material for publication: *SHELXTL*.

EMM thanks the University of Bristol and Overseas Research Scholarship Awards Scheme (ORSAS) for funding.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: ZS2046).

References

- Bruker (2007). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.
- Kohn, R. D., Seifert, G. & Kociok-Kohn, G. (1996). Angew. Chem. Int. Ed. 35, 2879–2881.
- Molins, E., Roig, A., Miravitlles, C., Moreno-Manas, M., Vallribera, A., Galvez, N. & Serra, N. (1998). Struct. Chem. 9, 203–208.
- Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Vasilevsky, I., Stenkamp, R. E., Lingafelter, E. C. & Rose, N. J. (1988). J. Coord. Chem. 19, 171–187.
- Yoshida, Y., Otsuka, A., Saito, G., Natsume, S., Nishibori, E., Takata, M., Sakata, M., Takahashi, M. & Yoko, T. (2005). Bull. Chem. Soc. Jpn, 78, 1921–1928.
- Zhong, C., Sasaki, T., Jimbo-Kobayashi, A., Fujiwara, E., Kobayashi, A., Tada, M. & Iwasawa, Y. (2007). Bull. Chem. Soc. Jpn, 80, 2365–2374.

Acta Cryst. (2010). E66, m846 [doi:10.1107/S1600536810024098]

Bis(1,3-dibenzylimidazolium) *µ*-oxido-bis[trichloridoferrate(III)]

E. M. Mutambi, C. J. Adams and A. G. Orpen

Comment

We sought to widen the synthetic routes for the synthesis of $[FeCl_4]^-[HIBz]^+$ compounds (IBz = *N,N'*-dibenzylimidazole) by using solid state reactions without resorting to solution methods. The aim was to form the salts by grinding together the reactants and this was done with FeCl₂ and IBz.HCl resulting in formation of the title compound (C₁₇H₁₇N₂)₂ [Cl₆Fe₂O] (I), which was obtained during the recrystallization process after extracting with dichloromethane and the structure is reported here. The asymmetric unit of (I) contains one HIBz⁺ cation and half of [Fe₂OCl₆]²⁻ dianion has *D*_{3d} symmetry with crystallographically imposed inversion symmetry coincident with the bridging O atom (Fig. 1). The stereochemistry about each FeCl₃O centre is tetrahedral [Fe–Cl, 2.2176 (5)–2.2427 (5) Å: Fe–O, 1.7545 (2) Å]. The Fe—O bond distance compares very well with the average bond length of 1.758 Å for similar anions reported in the CSD. However, the Fe—Cl bond distances are slightly longer compared to the mean Fe—Cl distance of 2.181 Å in the tetrahedral FeCl₄, but agree well with the average distance of 2.214 Å reported in the CSD for anions similar to (I). In the cation the phenyl rings lie approximately perpendicular to the plane of the HIBz ring [torsion angles C1–N1–C4–C5, 86.90 (19)°; C1–N2–C11–C12, 109.17 (18)°].

The crystal structure shows weak cation-anion C—H···Cl hydrogen-bonding interactions (Table 1, Fig. 2), giving a network structure (Figure 3).

Experimental

FeCl₂ (0.0299 g: 0.1 mmol) and *N*,*N*'-dibenzylimidazolium chloride (0.0858 g: 0.2 mmol) were ground together for *ca*. 10 minutes using a mortar and pestle. A small amount of the crystalline product was dissolved in dichloromethane and allowed to slowly evaporate at room temperature, giving after 3 days, yellow plate-like crystals of (I) suitable for X-ray diffraction.

Refinement

H atoms were positioned geometrically and refined using a riding model with C—H = 0.93 Å (aromatic) or 0.99 Å (aliphatic) and $U_{iso}(H) = 1.2$ times U_{eq} (C, N).

Figures

Fig. 1. Molecular structure and atom numbering scheme for the IBz cation and the complex dianion in (I). The dianion lies across an inversion centre: for primed atoms, the symmetry code is -x + 1, -y, -z + 2. Non-H atoms are drawn at the 50% probability level.

Fig. 2. Cation–anion C—H…Cl interactions in (I).

Fig. 3. Crystal packing showing the three-dimensional networks formed in (I).

Bis(1,3-dibenzylimidazolium) µ-oxido-bis[trichloridoferrate(III)]

Crystal data	
(C ₁₇ H ₁₇ N ₂) ₂ [Fe ₂ Cl ₆ O]	F(000) = 1712
$M_r = 839.05$	$D_{\rm x} = 1.512 {\rm ~Mg~m}^{-3}$
Orthorhombic, Pbca	Mo <i>K</i> α radiation, $\lambda = 0.71073$ Å
Hall symbol: -P 2ac 2ab	Cell parameters from 8129 reflections
a = 16.2468 (5) Å	$\theta = 2.3 - 29.0^{\circ}$
b = 12.8841 (4) Å	$\mu = 1.26 \text{ mm}^{-1}$
c = 17.6041 (5) Å	T = 100 K
$V = 3684.99 (19) \text{ Å}^3$	Plate, yellow
<i>Z</i> = 4	$0.31 \times 0.21 \times 0.16 \text{ mm}$
Data collection	
Bruker SMART CCD area-detector diffractometer	5399 independent reflections

graphite	$R_{\text{int}} = 0.052$
Detector resolution: 9.091 pixels mm ⁻¹	$\theta_{\text{max}} = 30.1^\circ, \ \theta_{\text{min}} = 3.4^\circ$
ϕ and ω scans	$h = -22 \rightarrow 22$
Absorption correction: multi-scan (<i>SADABS</i> ; Sheldrick, 1996)	$k = -10 \rightarrow 18$
$T_{\min} = 0.681, \ T_{\max} = 0.815$	$l = -24 \rightarrow 24$
42672 measured reflections	
Refinement	
Refinement on F^2	Primary atom site location: structure-invariant direct methods

	methods
Least-squares matrix: full	Secondary atom site location: difference Fourier map
$R[F^2 > 2\sigma(F^2)] = 0.033$	Hydrogen site location: inferred from neighbouring sites
$wR(F^2) = 0.081$	H-atom parameters constrained
<i>S</i> = 1.04	$w = 1/[\sigma^2(F_0^2) + (0.0331P)^2 + 1.977P]$ where $P = (F_0^2 + 2F_c^2)/3$
5399 reflections	$(\Delta/\sigma)_{\rm max} = 0.001$
214 parameters	$\Delta\rho_{max} = 0.77 \text{ e } \text{\AA}^{-3}$
0 restraints	$\Delta \rho_{\rm min} = -0.44 \text{ e } \text{\AA}^{-3}$

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

	x	У	Ζ	$U_{\rm iso}*/U_{\rm eq}$
Fe1	0.572901 (17)	0.002174 (18)	0.926492 (14)	0.01778 (7)
N1	0.69781 (9)	0.34450 (10)	0.70045 (8)	0.0158 (3)
N2	0.60555 (9)	0.24363 (10)	0.65187 (8)	0.0162 (3)
C1	0.65919 (11)	0.31864 (12)	0.63681 (9)	0.0168 (3)
H1	0.6684	0.3489	0.5883	0.020*
C2	0.60972 (11)	0.22098 (13)	0.72855 (9)	0.0191 (3)
H2	0.5782	0.1704	0.7550	0.023*
C3	0.66719 (11)	0.28445 (13)	0.75867 (9)	0.0191 (3)
Н3	0.6835	0.2872	0.8105	0.023*
C4	0.75812 (11)	0.42987 (12)	0.70917 (9)	0.0180 (3)
H4A	0.7904	0.4374	0.6618	0.022*

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^2)

H4B	0.7967	0.4132	0.7509	0.022*
C5	0.71438 (11)	0.53029 (12)	0.72638 (9)	0.0158 (3)
C6	0.70433 (11)	0.56215 (13)	0.80122 (10)	0.0192 (3)
H6	0.7271	0.5220	0.8413	0.023*
C7	0.66112 (12)	0.65228 (14)	0.81769 (11)	0.0255 (4)
H7	0.6553	0.6744	0.8689	0.031*
C8	0.62652 (12)	0.70995 (14)	0.75939 (12)	0.0283 (4)
H8	0.5958	0.7708	0.7706	0.034*
С9	0.63691 (13)	0.67870 (14)	0.68495 (12)	0.0289 (4)
Н9	0.6136	0.7186	0.6450	0.035*
C10	0.68116 (12)	0.58936 (14)	0.66809 (10)	0.0226 (4)
H10	0.6887	0.5688	0.6167	0.027*
C11	0.54927 (11)	0.19507 (13)	0.59652 (10)	0.0182 (3)
H11A	0.5494	0.2364	0.5491	0.022*
H11B	0.4926	0.1961	0.6173	0.022*
C12	0.57281 (11)	0.08439 (12)	0.57817 (9)	0.0159 (3)
C13	0.64112 (11)	0.06417 (13)	0.53308 (9)	0.0185 (3)
H13	0.6745	0.1199	0.5158	0.022*
C14	0.66090 (12)	-0.03689 (14)	0.51314 (9)	0.0209 (4)
H14	0.7082	-0.0503	0.4829	0.025*
C15	0.61153 (12)	-0.11859 (13)	0.53742 (10)	0.0219 (4)
H15	0.6244	-0.1877	0.5228	0.026*
C16	0.54355 (12)	-0.09921 (14)	0.58294 (10)	0.0213 (4)
H16	0.5102	-0.1551	0.5999	0.026*
C17	0.52421 (12)	0.00244 (13)	0.60382 (10)	0.0184 (3)
H17	0.4780	0.0157	0.6354	0.022*
Cl1	0.63474 (3)	0.15767 (3)	0.93098 (2)	0.02198 (10)
C12	0.66715 (3)	-0.12117 (3)	0.94427 (3)	0.02821 (11)
Cl3	0.51889 (3)	-0.02728 (3)	0.81283 (3)	0.02493 (10)
04	0.5000	0.0000	1.0000	0.0421 (6)

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Fe1	0.02114 (14)	0.01791 (12)	0.01430 (12)	-0.00244 (9)	0.00495 (10)	0.00096 (8)
N1	0.0180 (8)	0.0140 (6)	0.0153 (6)	0.0019 (5)	0.0011 (6)	-0.0013 (5)
N2	0.0190 (8)	0.0135 (6)	0.0160 (6)	0.0021 (5)	0.0017 (6)	-0.0007 (5)
C1	0.0204 (9)	0.0156 (7)	0.0144 (7)	0.0025 (6)	0.0018 (7)	0.0000 (6)
C2	0.0234 (10)	0.0164 (8)	0.0174 (8)	0.0015 (7)	0.0040 (7)	0.0035 (6)
C3	0.0252 (10)	0.0170 (8)	0.0151 (7)	0.0038 (7)	0.0017 (7)	0.0026 (6)
C4	0.0169 (9)	0.0170 (8)	0.0202 (8)	-0.0002 (6)	0.0008 (7)	-0.0017 (6)
C5	0.0147 (8)	0.0145 (7)	0.0182 (8)	-0.0022 (6)	0.0011 (6)	0.0006 (6)
C6	0.0189 (9)	0.0187 (8)	0.0200 (8)	-0.0023 (6)	0.0013 (7)	0.0001 (6)
C7	0.0246 (10)	0.0211 (9)	0.0308 (10)	-0.0048 (7)	0.0083 (8)	-0.0076 (7)
C8	0.0206 (10)	0.0137 (8)	0.0506 (12)	-0.0014 (7)	0.0110 (9)	-0.0004 (8)
C9	0.0252 (11)	0.0218 (9)	0.0397 (11)	0.0013 (7)	0.0011 (9)	0.0168 (8)
C10	0.0251 (10)	0.0222 (9)	0.0204 (8)	-0.0006 (7)	0.0022 (7)	0.0058 (6)
C11	0.0173 (9)	0.0170 (8)	0.0202 (8)	0.0001 (6)	-0.0016 (7)	-0.0014 (6)

C12	0.0179 (9)	0.0155 (7)	0.0144 (7)	0.0020 (6)	-0.0029 (7)	-0.0002 (5)
C13	0.0191 (9)	0.0206 (8)	0.0159 (7)	-0.0007 (7)	-0.0012 (7)	0.0012 (6)
C14	0.0224 (10)	0.0255 (9)	0.0148 (8)	0.0065 (7)	-0.0015 (7)	-0.0010 (6)
C15	0.0297 (11)	0.0196 (8)	0.0163 (8)	0.0058 (7)	-0.0071 (7)	-0.0024 (6)
C16	0.0250 (10)	0.0182 (8)	0.0208 (8)	-0.0020(7)	-0.0053 (7)	0.0027 (6)
C17	0.0189 (9)	0.0203 (8)	0.0160 (7)	0.0015 (7)	-0.0016 (7)	0.0006 (6)
Cl1	0.0318 (3)	0.01609 (19)	0.01806 (19)	-0.00222 (16)	0.00283 (17)	-0.00090 (14)
C12	0.0343 (3)	0.0168 (2)	0.0335 (2)	-0.00020 (18)	-0.0127 (2)	0.00265 (16)
C13	0.0263 (2)	0.0239 (2)	0.0246 (2)	0.00011 (17)	-0.00685 (19)	-0.00070 (16)
O4	0.0488 (15)	0.0435 (13)	0.0342 (12)	-0.0089 (10)	0.0261 (11)	-0.0015 (9)
Geometric paran	neters (Å, °)					
Fal O4		1 7545 (2)	С7 Ц	7	0.050)
Fe1 = 04		1.7343(2)	C/—n	7	1 201	(2)
Fel—Cl3		2.2170(3)		9	1.381	(3)
Fel—Cl2		2.2290(3)	Co—fi	0	1 220	(2)
Fel—Cli		2.2427 (5)	C9—C	10	1.389	(3)
NI-CI		1.327(2)	С9—Н	9	0.9500)
NI-C3		1.377(2)	C10—1	110	0.950	(2)
NI		1.481 (2)		_12 111 A	1.511	(2)
N2—C1		1.328 (2)		111A	0.9900)
N2-C2		1.383 (2)		111B	0.9900	
N2		1.4/6 (2)	C12—0	213	1.389	(2)
CI—HI		0.9500	C12—(217	1.394	(2)
C2—C3		1.350 (2)	C13—(.14	1.386	(2)
C2—H2		0.9500	C13—1	113	0.9500	
С3—Н3		0.9500	C14—0	215	1.391	(3)
C4—C5		1.507 (2)		114	0.9500	
C4—H4A		0.9900	C15—0	216	1.387	(3)
C4—H4B		0.9900	C15—1	115	0.9500)
C5—C10		1.387 (2)	C16—0	217	1.396	(2)
C5—C6		1.390 (2)	C16—I	116	0.9500)
С6—С7		1.387 (2)	C17—I		0.9500)
С6—Н6		0.9500	O4—F	e1 ¹	1.754	5 (2)
С7—С8		1.386 (3)				
O4—Fe1—Cl3		113.304 (18)	С9—С	8—C7	119.78	3 (17)
O4—Fe1—Cl2		110.417 (18)	С9—С	8—H8	120.1	
O4—Fe1—Cl1		106.901 (16)	С7—С	8—H8	120.1	
Cl3—Fe1—Cl1		111.221 (19)	C8—C	9—C10	120.49	9 (17)
Cl2—Fe1—Cl1		108.92 (2)	C8—C	9—Н9	119.8	
C1—N1—C3		108.45 (14)	C10—0	С9—Н9	119.8	
C1—N1—C4		125.94 (14)	С5—С	10—С9	119.80	5 (17)
C3—N1—C4		125.39 (14)	С5—С	10—H10	120.1	
C1—N2—C2		108.44 (14)	С9—С	10—H10	120.1	
C1—N2—C11		125.69 (14)	N2—C	11—C12	112.61	l (14)
C2—N2—C11		125.84 (15)	N2—C	11—H11A	109.1	
N1—C1—N2		108.93 (14)	C12—0	С11—Н11А	109.1	
N1-C1-H1		125.5	N2—C	11—H11B	109.1	
N2—C1—H1		125.5	C12—0	С11—Н11В	109.1	

C3—C2—N2	106.84 (15)	H11A—C11—H11B	107.8
С3—С2—Н2	126.6	C13—C12—C17	119.72 (15)
N2—C2—H2	126.6	C13—C12—C11	120.09 (15)
C2—C3—N1	107.33 (15)	C17—C12—C11	120.14 (16)
С2—С3—Н3	126.3	C14—C13—C12	120.40 (16)
N1—C3—H3	126.3	С14—С13—Н13	119.8
N1—C4—C5	110.28 (14)	С12—С13—Н13	119.8
N1—C4—H4A	109.6	C13—C14—C15	119.96 (17)
C5—C4—H4A	109.6	C13—C14—H14	120.0
N1—C4—H4B	109.6	C15—C14—H14	120.0
C5—C4—H4B	109.6	C16—C15—C14	120.04 (16)
H4A—C4—H4B	108.1	С16—С15—Н15	120.0
C10—C5—C6	119.58 (16)	С14—С15—Н15	120.0
C10C5C4	120.39 (15)	C15—C16—C17	120.01 (17)
C6—C5—C4	119.98 (15)	С15—С16—Н16	120.0
C7—C6—C5	120.31 (17)	С17—С16—Н16	120.0
С7—С6—Н6	119.8	C12—C17—C16	119.86 (17)
С5—С6—Н6	119.8	С12—С17—Н17	120.1
C8—C7—C6	119.95 (17)	C16—C17—H17	120.1
С8—С7—Н7	120.0	Fe1—O4—Fe1 ⁱ	180.0
С6—С7—Н7	120.0		
C3—N1—C1—N2	-0.60 (19)	C7—C8—C9—C10	0.6 (3)
C4—N1—C1—N2	-175.46 (14)	C6—C5—C10—C9	-1.2 (3)
C2—N2—C1—N1	0.37 (19)	C4—C5—C10—C9	176.32 (17)
C11—N2—C1—N1	178.63 (14)	C8—C9—C10—C5	0.8 (3)
C1—N2—C2—C3	0.01 (19)	C1—N2—C11—C12	109.77 (18)
C11—N2—C2—C3	-178.25 (15)	C2—N2—C11—C12	-72.3 (2)
N2-C2-C3-N1	-0.37 (19)	N2-C11-C12-C13	-73.19 (19)
C1—N1—C3—C2	0.60 (19)	N2-C11-C12-C17	109.41 (18)
C4—N1—C3—C2	175.50 (15)	C17—C12—C13—C14	0.4 (2)
C1—N1—C4—C5	86.90 (19)	C11—C12—C13—C14	-177.04 (15)
C3—N1—C4—C5	-87.12 (19)	C12—C13—C14—C15	0.9 (3)
N1-C4-C5-C10	-82.77 (19)	C13—C14—C15—C16	-1.4 (3)
N1-C4-C5-C6	94.71 (18)	C14—C15—C16—C17	0.6 (3)
C10-C5-C6-C7	0.2 (3)	C13—C12—C17—C16	-1.2 (3)
C4—C5—C6—C7	-177.29 (16)	C11—C12—C17—C16	176.24 (15)
C5—C6—C7—C8	1.1 (3)	C15-C16-C17-C12	0.7 (3)
C6—C7—C8—C9	-1.5 (3)		
Symmetry codes: (i) $-x+1$, $-y$, $-z+2$.			

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	$H \cdots A$	$D \cdots A$	$D\!\!-\!\!\mathrm{H}\!\cdots\!\!A$
C1—H1···Cl1 ⁱⁱ	0.95	2.82	3.6579 (16)	147
C3—H3····Cl1	0.95	2.81	3.4853 (17)	129
C11—H11A···Cl1 ⁱⁱ	0.99	2.85	3.7440 (18)	151
C13—H13···Cl2 ⁱⁱⁱ	0.95	2.86	3.5619 (18)	131
C15—H15····Cl2 ^{iv}	0.95	2.91	3.8403 (18)	167

C2—H2···Cl3	0.95	2.91	3.8223 (17)	162
Symmetry codes: (ii) x , $-y+1/2$, $z-1/2$; (iii) $-x+3/2$, $-x+$	-y, z-1/2; (iv) $x, -y-$	1/2, z-1/2.		

Fig. 1

